

2011 NETL CO₂ Capture Technology Meeting August 22-26, 2011 in Pittsburgh, PA.

Profile of SRI International

SRI is one of the world's largest independent R&D organizations

- Founded 1946 as the Stanford Research Institute in conjunction with Stanford University
- Independent, not-for-profit scientific research institute with forprofit spin-offs and subsidiaries
- Creating and delivering innovative science and technology solutions for governments and businesses worldwide.
- Annual combined revenues exceed \$500 million:
- 2,100 employees, 700 with advanced degrees
- Headquarters in Menlo Park, CA, offices in Washington, D.C. and throughout the U.S.

Project Overview

- Participants:
 - SRI International, Menlo Park, CA
 - ATMI, Inc., Danbury, CT
 - DOE-National Energy Technology Center
- Period of Performance:
 - 10-1-2008 through 9-30-2011
- Funding:
 - U.S.: Department of Energy: \$1.35 million
 - Cost share: \$0.45 million
 - Total: \$1.8 million

Team

SRI International

- Dr. Gopala Krishnan Associate Director (MRL) and PI
- Dr. Marc Hornbostel, Senior Materials Scientist
- Dr. Jianer Bao, Materials Scientist
- Dr. Angel Sanjurjo Materials Research Laboratory Director and Project Supervisor.

ATMI Inc.

- Sorbent developer, Industry perspective
- Dr. Joshua B. Sweeney, Director, Business Development
- Dr. Melissa Petruska, Materials Scientist
- Dr. Donald Carruthers; Senior Research Scientist
- Dr. Lawrence H. Dubois, Senior Vice President and Chief Technology Officer.

DOE-NETL

Andrew O'Palko

Basic Principles

- Adsorption of CO₂ from flue gas on a selective and high capacity carbon sorbent.
- Ability to achieve rapid adsorption and desorption rates (no solid state diffusion limit).
- Minimize thermal energy requirements
- Ability to desorb as pure CO₂.
- A cascading reactor geometry integrating the adsorber and stripper in a single vertical column
 - Provides a low pressure drop for gas flow and minimize physical handling of the sorbent.

Project Objectives

- Validate the performance of novel carbon sorbents for CO₂ capture on a bench-scale system for post-combustion applications.
- Perform parametric experiments to determine the optimum operating conditions.
- Evaluate the technical and economic viability of the technology.
- Pilot-scale testing in a future phase

Block Flow Diagram

Project Tasks

- Determination of the relevant properties of the sorbent.
 - Surface area, heat of adsorption and desorption, compressive strength and attrition resistance, size and shape of the sorbent particles.
- Improvements to the properties of the sorbent.
 - Structural modification of the pore structure
 - Functionalizing the surface
- Bench-scale parametric testing of the sorbent for adsorption and regeneration:
 - Screening tests
 - Parametric tests
 - Long-term tests
- Process technical and economic analysis.

Summary of Previous Reported Results

Adsorption/desorption isotherms

- Gives capacity of sorbent as a function of temperature and CO₂ pressure
- Heat of adsorption and desorption
 - Gives cooling requirements during adsorption and heating requirements during regeneration
 - Provides a guide to improving sorbent for CO₂ selectivity
- Compression strength and attrition resistance, particle size and shape
 - Determines suitability for use in moving bed reactors
- Determine the CO₂ capture rate of the current and improved sorbents in a small bench-scale reactor
 - At 20 C using a simulated flue gas containing air and CO₂.
 - Determine the adsorption kinetics and the CO₂ loading
- Rapidly heat to 120 C to desorb the CO₂:
 - Determine the desorption kinetics and the CO₂ desorbed.
- Limited number adsorption-regeneration cycles with selected sorbents

Merits of the Sorbent – Chemical Properties

- High CO₂ capacity:
 - The sorbent has a high capacity for CO₂ adsorption (20 wt% at 1 atm CO₂) and good selectivity for CO₂ over other flue gas components.
- Rapid adsorption and desorption rates:
 - The adsorption of CO₂ occurs on the micropores of the sorbent with very low activation energy (<5 kJ/mole), allowing rapid cycling of the sorbent.
- Low heat of adsorption and desorption:
 - The relatively low heats (28 kJ/mole) indicate that this process has a low heat demand for regeneration and low cooling requirements.
- High hydrothermal stability:
 - Direct heating with steam can be used for CO₂ desorption.

CO₂ Adsorption Isotherms

 $100 \text{ cm}^3/\text{g} = 20 \text{ wt}\% \text{ CO}_2$

Heat of Adsorption for CO₂

Note: Measured heat of desorption = 27 kJ/mole

Differential CO₂ loading Between 30° and 110°C

Merits of the Sorbent – Physical Properties

- Mechanical robustness for long lifetime:
 - Hard and attrition resistant; Unusually tough for a high surface area (1600 m²/g) porous solid.
 - ASTM Test D-5757: Attrition resistance very high: Weight loss <0.01%/hour
- Spherical morphology of the sorbent granules:
 - The spherical nature of the sorbent granules (100 to 300 µm in diameter) allows a smooth flow on an inclined surface, like a ball bearing.
 - This free-flowing, liquid-like characteristic allows the use of commercially available structural packing as the gas-solid contacting device.
- Low heat capacity:
 - The low heat capacity of the sorbent (1 J/g/K) and low density (1 kg/m³) minimizes the thermal energy needed to heat the sorbent to the regeneration temperature.
- High thermal conductivity:
 - The thermal conductivity of 0.8 w/m-K enables rapid thermal equilibrium between the surface and interior.

Fluid-like Flow of Sorbents Through a Commercial Structural Packing

Pressure Drop in the Absorber

Flow rate of 100 Std.liters/min= 0.91 m/s

Rapid Adsorption and Desorption of CO₂

Removal of CO₂ from Air-CO₂ Mixture

Evolution of CO₂ in the Stripper

Capture Efficiency and Product Purity

Integrated Absorber-Stripper System – Long Term Testing

Schematic Diagram of Integrated System

Photograph of Integrated System

Long-Term Testing (Earlier Data)

Fine Particles Recovered from Absorber Exhaust

50-hour Test Duration.

Long-Term Testing (Later Data)

Negligible Change in CO₂ Capacity

Improved Operation

Technical and Economic Analysis

- Steam-Pro modeling was used to generate the equipment sizing and heat and material flows.
- Use DOE cost models.
- Base case is an air-fired greenfield supercritical PC plant (700 MWe nominal) with no CO₂ capture.
- Compare a similar-size plant using CO₂
 capture with carbon sorbent subsystem.

Comparison of CO₂ Capture Costs

	Base Case	Econamine FG+	Carbon Sorbent
CO ₂ Capture	No	Yes	Yes
Gross Power Output (kW)	581,034	679,911	640,421
Auxiliary Power Requirement (kW)	31,016	129,485	90,246
Net Power Output (kW)	550,018	550,426	550,175
Net Plant HHV Efficiency (%)	38.9%	27.1%	35.1%
Net Plant HHV Heat Rate (Btu/kW-hr)	8,859	12,590	9,717
Coal Flowrate (lb/hr)	414,000	594,000	458,280
CO ₂ Emissions (lb/MWh)	1,790	252	194
Total Plant Cost (\$ x 1000)	872,118	1,586,765	1,224,213
Total Plant Cost (\$/kW)	1,586	2,883	2,225
LCOE (¢/kWh)	6.40	11.58	9.23
Increase in COE (%)	0.0%	80.9%	44.2%

Break-Down of the CO₂ Capture Cost Using Advanced Carbon Sorbent

Achievements

- Determined several physical and chemical properties of the advanced carbon sorbent in the context of flue gas CO₂ capture.
- Demonstrated an unique sorbent for CO₂ capture
 - Achieved ~99% CO₂ capture from air-CO₂ gas mixture
 - Achieved >98% pure CO₂ during regeneration
 - Capable of rapid adsorption and regeneration
 - Low heat requirements for regeneration
 - Fluid-like flow properties
 - High attrition resistance
- Developed an unique reactor system
 - Integrated absorber-desorber geometry
 - Minimize solids handling
 - Minimize heat exchanger requirements
 - Stable operation over 1000 cycles

Future Plans

Field Testing:

- Field test the process with the bench-scale reactor using a flue gas from an operating coal-fired boiler.
- Complete the preliminary economic analysis.
- Test the process at a pilot-scale level at a PC-fired boiler site.